Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Mike Zach
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Dave Willis
- Debjani Pal
- Gerald Tuskan
- Hsin Wang
- Ilenne Del Valle Kessra
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Chapman
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Paul Abraham
- Sandra Davern
- Sydney Murray III
- Tony Beard
- Vasilis Tzoganis
- Vasiliy Morozov
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

The technology describes an electron beam in a storage ring as a quantum computer.

The invention provides on-line analysis of droplets for mass spectrometry.