Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Soydan Ozcan
- Meghan Lamm
- Umesh N MARATHE
- Halil Tekinalp
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Lawrence {Larry} M Anovitz
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Ali Abouimrane
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Marm Dixit
- Matt Korey
- Pum Kim
- Ruhul Amin
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Andrew G Stack
- Ben Lamm
- Brian Post
- Cait Clarkson
- David L Wood III
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Juliane Weber
- Junbin Choi
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Lu Yu
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peng Yang
- Pradeep Ramuhalli
- Sai Krishna Reddy Adapa
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Xianhui Zhao
- Yaocai Bai
- Zhijia Du

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.