Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Sheng Dai
- Justin West
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ritin Mathews
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- David Olvera Trejo
- Frederic Vautard
- Ilja Popovs
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Saurabh Prakash Pethe
- Scott Smith
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Bruce Moyer
- Calen Kimmell
- Christopher Bowland
- Emma Betters
- Eric Wolfe
- Felix L Paulauskas
- Greg Corson
- Holly Humphrey
- Jayanthi Kumar
- Jesse Heineman
- John Potter
- Josh B Harbin
- Kaustubh Mungale
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Robert E Norris Jr
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Vlastimil Kunc

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.