Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Ying Yang
- Adam Willoughby
- Alexei P Sokolov
- Bruce A Pint
- Catalin Gainaru
- Edgar Lara-Curzio
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Rishi Pillai
- Steven J Zinkle
- Vera Bocharova
- Yanli Wang
- Yutai Kato
- Zoriana Demchuk
- Achutha Tamraparni
- Alice Perrin
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce Moyer
- Charles Hawkins
- Christopher Ledford
- Corson Cramer
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Isaiah Dishner
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- Josh Michener
- Karen Cortes Guzman
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Marie Romedenne
- Meghan Lamm
- Mengjia Tang
- Michael Kirka
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Robert Sacci
- Ryan Dehoff
- Santanu Roy
- Shailesh Dangwal
- Shajjad Chowdhury
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Tim Graening Seibert
- Tolga Aytug
- Uvinduni Premadasa
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).