Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Adam Willoughby
- Ethan Self
- Jaswinder Sharma
- Rishi Pillai
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Brandon Johnston
- Bruce A Pint
- Chanho Kim
- Charles Hawkins
- Georgios Polyzos
- Ilias Belharouak
- Jiheon Jun
- Jun Yang
- Khryslyn G Araño
- Logan Kearney
- Louise G Evans
- Marie Romedenne
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Priyanshi Agrawal
- Richard L. Reed
- Vera Bocharova
- Xiang Lyu
- Yong Chae Lim
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.