Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Adam Willoughby
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Rishi Pillai
- Vincent Paquit
- William Carter
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Brandon Johnston
- Bruce A Pint
- Bruce Hannan
- Calen Kimmell
- Canhai Lai
- Charles Hawkins
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Dave Willis
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jiheon Jun
- John Wenzel
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Ryan Dehoff
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladimir Orlyanchik
- Vladislav N Sedov
- Yacouba Diawara
- Yong Chae Lim
- Yun Liu
- Zackary Snow
- Zhili Feng

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

Neutron beams are used around the world to study materials for various purposes.