Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Adam Willoughby
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Rishi Pillai
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Brandon Johnston
- Bruce A Pint
- Bruce Hannan
- Charles Hawkins
- Dan Coughlin
- Dave Willis
- Jiheon Jun
- Jim Tobin
- John Wenzel
- Josh Crabtree
- Joshua Vaughan
- Keju An
- Kim Sitzlar
- Loren L Funk
- Luke Chapman
- Marie Romedenne
- Mark Loguillo
- Matthew B Stone
- Merlin Theodore
- Peter Wang
- Polad Shikhaliev
- Priyanshi Agrawal
- Shannon M Mahurin
- Steven Guzorek
- Subhabrata Saha
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vipin Kumar
- Vladislav N Sedov
- Yacouba Diawara
- Yong Chae Lim
- Yun Liu
- Zhili Feng

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.