Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- Jaswinder Sharma
- Kyle Kelley
- Robert Sacci
- Sergiy Kalnaus
- Alexander I Wiechert
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Chanho Kim
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Georgios Polyzos
- Gerd Duscher
- Ilias Belharouak
- Joanna Mcfarlane
- Jonathan Willocks
- Jun Yang
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Louise G Evans
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matthew S Chambers
- Matt Vick
- Mengdawn Cheng
- Michael Toomey
- Nancy Dudney
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Paula Cable-Dunlap
- Richard L. Reed
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vandana Rallabandi
- Vera Bocharova
- Xiang Lyu

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.