Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Umesh N MARATHE
- Halil Tekinalp
- Michael Kirka
- Vlastimil Kunc
- Ahmed Hassen
- Beth L Armstrong
- Katie Copenhaver
- Rangasayee Kannan
- Ryan Dehoff
- Steven Guzorek
- Uday Vaidya
- Adam Stevens
- Alex Roschli
- Brian Post
- Christopher Ledford
- Dan Coughlin
- Georges Chahine
- Matt Korey
- Peeyush Nandwana
- Pum Kim
- Rob Moore II
- Steve Bullock
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Amir K Ziabari
- Ben Lamm
- Cait Clarkson
- Corson Cramer
- David Nuttall
- Erin Webb
- Evin Carter
- Fred List III
- Gabriel Veith
- James Klett
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Keith Carver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Matthew Brahlek
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Butcher
- Tolga Aytug
- Trevor Aguirre
- Tyler Smith
- Vincent Paquit
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.