Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Jun Qu
- Singanallur Venkatakrishnan
- Alex Plotkowski
- Amir K Ziabari
- Amit Shyam
- Corson Cramer
- James A Haynes
- Meghan Lamm
- Michael Kirka
- Philip Bingham
- Ryan Dehoff
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Vincent Paquit
- Alice Perrin
- Ben Lamm
- Bryan Lim
- Christopher Ledford
- David J Mitchell
- Diana E Hun
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- James Klett
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mark M Root
- Marm Dixit
- Matthew S Chambers
- Nancy Dudney
- Nicholas Richter
- Obaid Rahman
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Tolga Aytug
- Trevor Aguirre
- Ying Yang
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.