Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Costas Tsouris
- Kashif Nawaz
- Stephen Jesse
- Alexander I Wiechert
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Bogdan Dryzhakov
- Brian Fricke
- Bryan Lim
- Charles F Weber
- Christopher Rouleau
- Debangshu Mukherjee
- Derek Dwyer
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Louise G Evans
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Vick
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Paula Cable-Dunlap
- Peeyush Nandwana
- Radu Custelcean
- Rangasayee Kannan
- Richard L. Reed
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Tomas Grejtak
- Utkarsh Pratiush
- Vandana Rallabandi
- Yiyu Wang
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.