Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Ying Yang
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Alice Perrin
- Amir K Ziabari
- Kashif Nawaz
- Michael Kirka
- Philip Bingham
- Stephen Jesse
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Bruce A Pint
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Diana E Hun
- Gerd Duscher
- Gerry Knapp
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James A Haynes
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Obaid Rahman
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Radu Custelcean
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumit Bahl
- Sumner Harris
- Sunyong Kwon
- Tim Graening Seibert
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.