Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Kashif Nawaz
- Philip Bingham
- Ryan Dehoff
- Stephen Jesse
- Vincent Paquit
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Callie Goetz
- Christopher Hobbs
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Diana E Hun
- Eddie Lopez Honorato
- Fred List III
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Keith Carver
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Matt Kurley III
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Obaid Rahman
- Ondrej Dyck
- Philip Boudreaux
- Radu Custelcean
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Saban Hus
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Thomas Butcher
- Tyler Gerczak
- Utkarsh Pratiush
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.