Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Benjamin Manard
- Bruce Hannan
- Charles F Weber
- Costas Tsouris
- Dan Coughlin
- Dave Willis
- Jim Tobin
- Joanna Mcfarlane
- John Wenzel
- Jonathan Willocks
- Josh Crabtree
- Joshua Vaughan
- Keju An
- Kim Sitzlar
- Loren L Funk
- Louise G Evans
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Merlin Theodore
- Peter Wang
- Polad Shikhaliev
- Richard L. Reed
- Shannon M Mahurin
- Steven Guzorek
- Subhabrata Saha
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vipin Kumar
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.