Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Rama K Vasudevan
- Andrzej Nycz
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Sergei V Kalinin
- Stephen Jesse
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Brian Williams
- Bruce Hannan
- Dave Willis
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- John Wenzel
- Joshua Vaughan
- Kai Li
- Kashif Nawaz
- Keju An
- Kevin M Roccapriore
- Liam Collins
- Loren L Funk
- Luke Chapman
- Mariam Kiran
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Polad Shikhaliev
- Saban Hus
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yongtao Liu
- Yun Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.