Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Peeyush Nandwana
- Amit Shyam
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- Lauren Heinrich
- Luke Meyer
- Peter Wang
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Plotkowski
- Alex Walters
- Andres Marquez Rossy
- Bekki Mills
- Benjamin Manard
- Bruce A Pint
- Bruce Hannan
- Bryan Lim
- Charles F Weber
- Christopher Fancher
- Costas Tsouris
- Dave Willis
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- John Wenzel
- Jonathan Willocks
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Polad Shikhaliev
- Ryan Dehoff
- Shannon M Mahurin
- Steven J Zinkle
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tim Graening Seibert
- Tomas Grejtak
- Tomonori Saito
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yacouba Diawara
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yun Liu
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.