Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Hongbin Sun
- Luke Meyer
- Prashant Jain
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Bruce Hannan
- Callie Goetz
- Christopher Hobbs
- Dave Willis
- Eddie Lopez Honorato
- Fred List III
- Ian Greenquist
- Ilias Belharouak
- John Wenzel
- Joshua Vaughan
- Keith Carver
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Kurley III
- Nate See
- Nithin Panicker
- Peter Wang
- Polad Shikhaliev
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Ruhul Amin
- Ryan Heldt
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thomas Butcher
- Tomonori Saito
- Tyler Gerczak
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Neutron beams are used around the world to study materials for various purposes.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and