Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Costas Tsouris
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Bekki Mills
- Benjamin Manard
- Bogdan Dryzhakov
- Charles F Weber
- Christopher Rouleau
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- Joanna Mcfarlane
- John Wenzel
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Keju An
- Kunal Mondal
- Kyle Kelley
- Mahim Mathur
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Mina Yoon
- Mingyan Li
- Oscar Martinez
- Radu Custelcean
- Rose Montgomery
- Sam Hollifield
- Shannon M Mahurin
- Steven Randolph
- Tao Hong
- Thomas R Muth
- Tomonori Saito
- Vandana Rallabandi
- Venugopal K Varma
- Victor Fanelli

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.