Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Mike Zach
- Vincent Paquit
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Andrew F May
- Bekki Mills
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Charlie Cook
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- John Wenzel
- Justin Griswold
- Keju An
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark Loguillo
- Matthew B Stone
- Nedim Cinbiz
- Padhraic L Mulligan
- Ryan Dehoff
- Sandra Davern
- Shannon M Mahurin
- Tao Hong
- Tomonori Saito
- Tony Beard
- Victor Fanelli
- Vladimir Orlyanchik
- Zackary Snow

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Neutron beams are used around the world to study materials for various purposes.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.