Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Andrzej Nycz
- Chris Masuo
- Jaswinder Sharma
- Luke Meyer
- Marm Dixit
- Ruhul Amin
- William Carter
- Xiang Lyu
- Alex Walters
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brian Sanders
- Bruce Hannan
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Hongbin Sun
- Ilenne Del Valle Kessra
- James Szybist
- Jerry Parks
- Jonathan Willocks
- Joshua Vaughan
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Loren L Funk
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Abraham
- Paul Groth
- Peter Wang
- Polad Shikhaliev
- Pradeep Ramuhalli
- Ritu Sahore
- Theodore Visscher
- Todd Toops
- Vilmos Kertesz
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yang Liu
- Yaocai Bai
- Zhijia Du

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.