Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Kevin M Roccapriore
- Lawrence {Larry} M Anovitz
- Maxim A Ziatdinov
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- Jaswinder Sharma
- Kyle Kelley
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Arpan Biswas
- Chanho Kim
- Felipe Polo Garzon
- Georgios Polyzos
- Gerd Duscher
- Ilias Belharouak
- Jason Jarnagin
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Kevin Spakes
- Khryslyn G Araño
- Liam Collins
- Lilian V Swann
- Logan Kearney
- Mahshid Ahmadi-Kalinina
- Mark Provo II
- Marti Checa Nualart
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Neus Domingo Marimon
- Nihal Kanbargi
- Olga S Ovchinnikova
- Peng Yang
- Rob Root
- Sai Krishna Reddy Adapa
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vera Bocharova
- Xiang Lyu

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.