Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Information Technology Services Directorate (2)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Mingyan Li
- Sam Hollifield
- Sergei V Kalinin
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Weber
- Isaac Sikkema
- Jason Jarnagin
- Joseph Olatt
- Kevin M Roccapriore
- Kevin Spakes
- Kunal Mondal
- Liam Collins
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oscar Martinez
- Rob Root
- Stephen Jesse
- Steven Randolph
- T Oesch
- Yongtao Liu

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.