Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Stephen Jesse
- Vlastimil Kunc
- Ahmed Hassen
- Alexander I Wiechert
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Benjamin Manard
- Bogdan Dryzhakov
- Charles F Weber
- Costas Tsouris
- Dan Coughlin
- Derek Dwyer
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Jim Tobin
- Joanna Mcfarlane
- Jonathan Willocks
- Josh Crabtree
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kim Sitzlar
- Liam Collins
- Louise G Evans
- Marti Checa Nualart
- Matt Vick
- Maxim A Ziatdinov
- Mengdawn Cheng
- Merlin Theodore
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Paula Cable-Dunlap
- Richard L. Reed
- Saban Hus
- Steven Guzorek
- Steven Randolph
- Subhabrata Saha
- Vandana Rallabandi
- Vipin Kumar
- Yongtao Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.