Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Brian Gibson
- Joshua Vaughan
- Luke Meyer
- Mike Zach
- Udaya C Kalluri
- William Carter
- Aaron Werth
- Akash Jag Prasad
- Ali Passian
- Amit Shyam
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Hsin Wang
- J.R. R Matheson
- James Klett
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nance Ericson
- Nedim Cinbiz
- Padhraic L Mulligan
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Sandra Davern
- Srikanth Yoginath
- Tony Beard
- Varisara Tansakul
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yarom Polsky

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

In additive printing that utilizes multiple robotic agents to build, each agent, or “arm”, is currently limited to a prescribed path determined by the user.

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.