Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Amit Shyam
- Alex Plotkowski
- Ryan Dehoff
- Alice Perrin
- James A Haynes
- Mike Zach
- Sumit Bahl
- Ying Yang
- Adam Stevens
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Post
- Bruce Moyer
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- Dean T Pierce
- Debjani Pal
- Gerry Knapp
- Gordon Robertson
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jovid Rakhmonov
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Michael Kirka
- Nedim Cinbiz
- Nicholas Richter
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tony Beard
- William Peter
- Yan-Ru Lin
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.