Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Halil Tekinalp
- Rafal Wojda
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Prasad Kandula
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Matt Korey
- Pum Kim
- Shajjad Chowdhury
- Vandana Rallabandi
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Amber Hubbard
- Ben Lamm
- Brian Post
- Cait Clarkson
- Christopher Fancher
- David Nuttall
- Diana E Hun
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- Gabriel Veith
- James Manley
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Joe Rendall
- Josh Crabtree
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kuma Sumathipala
- Marcio Magri Kimpara
- Marm Dixit
- Mengjia Tang
- Mostak Mohammad
- Muneeshwaran Murugan
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Omer Onar
- Paritosh Mhatre
- Praveen Kumar
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Steve Bullock
- Subho Mukherjee
- Suman Debnath
- Tolga Aytug
- Tomonori Saito
- Tyler Smith
- Xianhui Zhao
- Zoriana Demchuk

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.