Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Olga S Ovchinnikova
- Peeyush Nandwana
- Sergei V Kalinin
- Stephen Jesse
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Costas Tsouris
- Debangshu Mukherjee
- Glenn R Romanoski
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Md Inzamam Ul Haque
- Neus Domingo Marimon
- Ondrej Dyck
- Radu Custelcean
- Ramanan Sankaran
- Rose Montgomery
- Saban Hus
- Steven Randolph
- Thomas R Muth
- Venugopal K Varma
- Vimal Ramanuj
- Wenjun Ge
- Yongtao Liu

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.