Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- Andres Marquez Rossy
- Benjamin Manard
- Brian Post
- Bruce Moyer
- Charles F Weber
- Christopher Fancher
- Costas Tsouris
- Dean T Pierce
- Debjani Pal
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- Jonathan Willocks
- Jovid Rakhmonov
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Mike Zach
- Nicholas Richter
- Padhraic L Mulligan
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Richard L. Reed
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Vandana Rallabandi
- William Peter
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.