Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Corson Cramer
- Steve Bullock
- Greg Larsen
- James Klett
- Trevor Aguirre
- Mike Zach
- Vlastimil Kunc
- Ahmed Hassen
- Andrew F May
- Ben Garrison
- Beth L Armstrong
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Dustin Gilmer
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jong K Keum
- Jordan Wright
- Justin Griswold
- Kuntal De
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nedim Cinbiz
- Padhraic L Mulligan
- Radu Custelcean
- Sana Elyas
- Sandra Davern
- Steven Guzorek
- Steven Randolph
- Tomonori Saito
- Tony Beard

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.