Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Radu Custelcean
- Ali Passian
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Benjamin L Doughty
- Bruce Moyer
- Gs Jung
- Nikki Thiele
- Santa Jansone-Popova
- Alexander I Wiechert
- Bogdan Dryzhakov
- Christopher Rouleau
- Claire Marvinney
- Harper Jordan
- Ilia N Ivanov
- Ilja Popovs
- Ivan Vlassiouk
- Jayanthi Kumar
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Nance Ericson
- Parans Paranthaman
- Santanu Roy
- Saurabh Prakash Pethe
- Srikanth Yoginath
- Steven Randolph
- Subhamay Pramanik
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Yingzhong Ma

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.