Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Sheng Dai
- Costas Tsouris
- Radu Custelcean
- Diana E Hun
- Parans Paranthaman
- Zhenzhen Yang
- Andrew Sutton
- Anisur Rahman
- Bishnu Prasad Thapaliya
- Jeff Foster
- Michelle Kidder
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Ilja Popovs
- Jeffrey Einkauf
- Mary Danielson
- Shannon M Mahurin
- Singanallur Venkatakrishnan
- Syed Islam
- Alexander I Wiechert
- Alexei P Sokolov
- Amir K Ziabari
- Benjamin L Doughty
- Bruce Moyer
- Catalin Gainaru
- Frederic Vautard
- Gs Jung
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Michael Cordon
- Michael Toomey
- Michelle Lehmann
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Philip Bingham
- Philip Boudreaux
- Ramesh Bhave
- Ryan Dehoff
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Stephen M Killough
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Vincent Paquit
- Zoriana Demchuk
- Achutha Tamraparni
- Ahmed Hassen
- Ajibola Lawal
- Anees Alnajjar
- Arit Das
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bryan Maldonado Puente
- Canhai Lai
- Charles F Weber
- Christopher Bowland
- Corey Cooke
- Corson Cramer
- Dhruba Deka
- Eric Wolfe
- Felix L Paulauskas
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Isaiah Dishner
- James Parks II
- Jayanthi Kumar
- Jennifer M Pyles
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Josh Michener
- Karen Cortes Guzman
- Kaustubh Mungale
- Kuma Sumathipala
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Mark M Root
- Matt Vick
- Md Faizul Islam
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Mengjia Tang
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Phillip Halstenberg
- Robert E Norris Jr
- Robert Sacci
- Ryan Kerekes
- Sally Ghanem
- Santanu Roy
- Shailesh Dangwal
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Sreshtha Sinha Majumdar
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Uvinduni Premadasa
- Vandana Rallabandi
- Vlastimil Kunc
- Yeonshil Park
- Yingzhong Ma

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.