Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Ahmed Hassen
- Vlastimil Kunc
- Sheng Dai
- Corson Cramer
- Kashif Nawaz
- Radu Custelcean
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Uday Vaidya
- Meghan Lamm
- Parans Paranthaman
- Umesh N MARATHE
- Vipin Kumar
- Zhenzhen Yang
- Anisur Rahman
- Bishnu Prasad Thapaliya
- Brian Post
- Costas Tsouris
- Halil Tekinalp
- Jeff Foster
- Joe Rendall
- Zhiming Gao
- Amit K Naskar
- Beth L Armstrong
- Craig A Bridges
- David Nuttall
- Diana E Hun
- Edgar Lara-Curzio
- Greg Larsen
- Gyoung Gug Jang
- Ilja Popovs
- James Klett
- Jeffrey Einkauf
- Kai Li
- Katie Copenhaver
- Mary Danielson
- Praveen Cheekatamarla
- Shannon M Mahurin
- Syed Islam
- Trevor Aguirre
- Vishaldeep Sharma
- Alexei P Sokolov
- Alex Roschli
- Benjamin L Doughty
- Bruce Moyer
- Catalin Gainaru
- Craig Blue
- Dan Coughlin
- Frederic Vautard
- Georges Chahine
- Gs Jung
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Jim Tobin
- John Lindahl
- Kyle Gluesenkamp
- Li-Qi Qiu
- Logan Kearney
- Matt Korey
- Michael Toomey
- Michelle Lehmann
- Mingkan Zhang
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Pum Kim
- Ramesh Bhave
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Segun Isaac Talabi
- Tolga Aytug
- Tyler Smith
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Anees Alnajjar
- Arit Das
- Ben Lamm
- Bo Shen
- Brian Fricke
- Brittany Rodriguez
- Cait Clarkson
- Charlie Cook
- Cheng-Min Yang
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Easwaran Krishnan
- Eric Wolfe
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Gabriel Veith
- Holly Humphrey
- Hongbin Sun
- Huixin (anna) Jiang
- Isaiah Dishner
- Jayanthi Kumar
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Jong K Keum
- Jordan Wright
- Josh Crabtree
- Josh Michener
- Julian Charron
- Karen Cortes Guzman
- Kaustubh Mungale
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuma Sumathipala
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Marm Dixit
- Md Faizul Islam
- Melanie Moses-DeBusk Debusk
- Mengjia Tang
- Merlin Theodore
- Michael Kirka
- Mina Yoon
- Muneeshwaran Murugan
- Nadim Hmeidat
- Nageswara Rao
- Nick Galan
- Nick Gregorich
- Nickolay Lavrik
- Nidia Gallego
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Pengtao Wang
- Phillip Halstenberg
- Robert E Norris Jr
- Robert Sacci
- Ryan Ogle
- Sana Elyas
- Sanjita Wasti
- Santanu Roy
- Shailesh Dangwal
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Subhabrata Saha
- Subhamay Pramanik
- Sudarsanam Babu
- Sumit Gupta
- Tao Hong
- Thomas Feldhausen
- Tony Beard
- Troy Seay
- Uvinduni Premadasa
- Xianhui Zhao
- Yingzhong Ma

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.