Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- William Carter
- Alex Roschli
- Alice Perrin
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Costas Tsouris
- Luke Meyer
- Ryan Dehoff
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alexander I Wiechert
- Alex Plotkowski
- Alex Walters
- Amit Shyam
- Amy Elliott
- Benjamin Manard
- Bruce A Pint
- Cameron Adkins
- Charles F Weber
- Christopher Ledford
- Erin Webb
- Evin Carter
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Isha Bhandari
- James A Haynes
- Jeremy Malmstead
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Matt Vick
- Michael Borish
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tyler Smith
- Vandana Rallabandi
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.