Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Alex Roschli
- Andrzej Nycz
- Benjamin L Doughty
- Biruk A Feyissa
- Bruce Moyer
- Carrie Eckert
- Gs Jung
- Josh Michener
- Kuntal De
- Nikki Thiele
- Santa Jansone-Popova
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander I Wiechert
- Alex Walters
- Austin Carroll
- Brian Post
- Brian Sanders
- Cameron Adkins
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Diana E Hun
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Ilja Popovs
- Isaiah Dishner
- Isha Bhandari
- Jayanthi Kumar
- Jay D Huenemann
- Jeff Foster
- Jennifer M Pyles
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kitty K Mccracken
- Kyle Davis
- Laetitia H Delmau
- Liam White
- Liangyu Qian
- Luke Sadergaski
- Mark M Root
- Md Faizul Islam
- Mengdawn Cheng
- Michael Borish
- Mina Yoon
- Nandhini Ashok
- Oluwafemi Oyedeji
- Parans Paranthaman
- Paul Abraham
- Paula Cable-Dunlap
- Philip Boudreaux
- Santanu Roy
- Saurabh Prakash Pethe
- Serena Chen
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Subhamay Pramanik
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz
- Yingzhong Ma

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.