Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Ruhul Amin
- Yaosuo Xue
- Alex Roschli
- David L Wood III
- Erin Webb
- Evin Carter
- Fei Wang
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Jeremy Malmstead
- Junbin Choi
- Kitty K Mccracken
- Lu Yu
- Marm Dixit
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Rafal Wojda
- Soydan Ozcan
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Tyler Smith
- Xianhui Zhao
- Yaocai Bai
- Yonghao Gui
- Zhijia Du

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.