Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ryan Dehoff
- Michael Kirka
- Mike Zach
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Blane Fillingim
- Bogdan Dryzhakov
- Brad Johnson
- Brian Post
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jong K Keum
- Justin Griswold
- Kuntal De
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Mina Yoon
- Nedim Cinbiz
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Tony Beard
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.