Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Rafal Wojda
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Prasad Kandula
- Vandana Rallabandi
- Alex Plotkowski
- Costas Tsouris
- Gurneesh Jatana
- Jonathan Willocks
- Kashif Nawaz
- Michael Kirka
- Singanallur Venkatakrishnan
- Stephen Jesse
- Todd Toops
- Vincent Paquit
- Yeonshil Park
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alexey Serov
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Charles F Weber
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- David Nuttall
- Debangshu Mukherjee
- Dhruba Deka
- Diana E Hun
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gyoung Gug Jang
- Haiying Chen
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Szybist
- Jamieson Brechtl
- Jewook Park
- Joanna Mcfarlane
- Jong K Keum
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marcio Magri Kimpara
- Mark M Root
- Marti Checa Nualart
- Matt Vick
- Md Inzamam Ul Haque
- Melanie Moses-DeBusk Debusk
- Mina Yoon
- Mostak Mohammad
- Neus Domingo Marimon
- Nickolay Lavrik
- Omer Onar
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Praveen Kumar
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Steven Randolph
- Subho Mukherjee
- Sudarsanam Babu
- Suman Debnath
- Sumner Harris
- Utkarsh Pratiush
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- William P Partridge Jr
- Xiang Lyu
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.