Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Ryan Dehoff
- Amit Shyam
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Alex Walters
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Srikanth Yoginath
- Vincent Paquit
- Alice Perrin
- Anees Alnajjar
- Brian Gibson
- Clay Leach
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Michael Kirka
- Pratishtha Shukla
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Udaya C Kalluri
- William Carter
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Akash Jag Prasad
- Ali Passian
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Beth L Armstrong
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Costas Tsouris
- Craig A Bridges
- David Nuttall
- Debangshu Mukherjee
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- J.R. R Matheson
- James Haley
- Jamieson Brechtl
- Jaswinder Sharma
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Sheng Dai
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Sunyong Kwon
- Utkarsh Pratiush
- Varisara Tansakul
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Xiaohan Yang
- Yan-Ru Lin
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.