Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Andrzej Nycz
- Ryan Dehoff
- Chris Masuo
- Rama K Vasudevan
- Vincent Paquit
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Michael Kirka
- Olga S Ovchinnikova
- Peeyush Nandwana
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Brian Gibson
- Brian Post
- Clay Leach
- Costas Tsouris
- Joshua Vaughan
- Kashif Nawaz
- Luke Meyer
- Philip Bingham
- Stephen Jesse
- Udaya C Kalluri
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Alex Plotkowski
- Alice Perrin
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Calen Kimmell
- Callie Goetz
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- David Nuttall
- Debangshu Mukherjee
- Diana E Hun
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gerd Duscher
- Gina Accawi
- Gordon Robertson
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- J.R. R Matheson
- James Haley
- James Parks II
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- John Potter
- Jong K Keum
- Kai Li
- Keith Carver
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Matt Kurley III
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Obaid Rahman
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Radu Custelcean
- Richard Howard
- Riley Wallace
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Soydan Ozcan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Thomas Butcher
- Tyler Gerczak
- Tyler Smith
- Utkarsh Pratiush
- Vipin Kumar
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow
- Zhiming Gao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.