Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Brian Post
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Peter Wang
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Sudarsanam Babu
- Vipin Kumar
- Yongtao Liu
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- David Nuttall
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Peeyush Nandwana
- Soydan Ozcan
- Thomas Feldhausen
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Dan Coughlin
- J.R. R Matheson
- Jim Tobin
- Joshua Vaughan
- Kashif Nawaz
- Lauren Heinrich
- Michael Kirka
- Pum Kim
- Segun Isaac Talabi
- Stephen Jesse
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Yousub Lee
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Brian Gibson
- Brittany Rodriguez
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- John Lindahl
- John Potter
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Kai Li
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kyle Gluesenkamp
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Merlin Theodore
- Michael Borish
- Mina Yoon
- Nadim Hmeidat
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sarah Graham
- Scott Smith
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Randolph
- Subhabrata Saha
- Sumner Harris
- Utkarsh Pratiush
- William Carter
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.