Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Ying Yang
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Edgar Lara-Curzio
- Jaswinder Sharma
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Adam Willoughby
- Alice Perrin
- Anees Alnajjar
- Beth L Armstrong
- Blane Fillingim
- Brian Post
- Bruce A Pint
- Chad Steed
- Costas Tsouris
- Frederic Vautard
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Radu Custelcean
- Rishi Pillai
- Ryan Dehoff
- Sergiy Kalnaus
- Steven J Zinkle
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Amy Moore
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brandon Miller
- Brian Williams
- Bryan Lim
- Charles Hawkins
- Christopher Bowland
- Christopher Ledford
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Eric Wolfe
- Felix L Paulauskas
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Holly Humphrey
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Mariam Kiran
- Marie Romedenne
- Md Inzamam Ul Haque
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Robert E Norris Jr
- Samudra Dasgupta
- Santanu Roy
- Shajjad Chowdhury
- Sheng Dai
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.