Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Diana E Hun
- Radu Custelcean
- Ali Passian
- Costas Tsouris
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Philip Boudreaux
- Som Shrestha
- Alex Plotkowski
- Amit Shyam
- Gyoung Gug Jang
- Jeffrey Einkauf
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Tomonori Saito
- Anees Alnajjar
- Benjamin L Doughty
- Blane Fillingim
- Brian Post
- Bruce Moyer
- Bryan Maldonado Puente
- Chad Steed
- Gs Jung
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Mahabir Bhandari
- Nikki Thiele
- Nolan Hayes
- Pratishtha Shukla
- Santa Jansone-Popova
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Venugopal K Varma
- Yousub Lee
- Zoriana Demchuk
- Aaron Werth
- Achutha Tamraparni
- Adam Aaron
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Catalin Gainaru
- Charles D Ottinger
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Ilja Popovs
- Jaswinder Sharma
- Jayanthi Kumar
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Mark M Root
- Md Faizul Islam
- Md Inzamam Ul Haque
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Natasha Ghezawi
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Parans Paranthaman
- Peter Wang
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Dehoff
- Samudra Dasgupta
- Santanu Roy
- Saurabh Prakash Pethe
- Sheng Dai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Subhamay Pramanik
- Sunyong Kwon
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Ying Yang
- Yingzhong Ma
- Yiyu Wang
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.