Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Srikanth Yoginath
- James J Nutaro
- Mike Zach
- Pratishtha Shukla
- Sergei V Kalinin
- Sudip Seal
- Ali Passian
- Andrew F May
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Harper Jordan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nance Ericson
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Padhraic L Mulligan
- Sandra Davern
- Stephen Jesse
- Steven Randolph
- Tony Beard
- Varisara Tansakul
- Yongtao Liu

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.