Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- William Carter
- Alex Roschli
- Alex Walters
- Brian Post
- Kuntal De
- Luke Meyer
- Udaya C Kalluri
- Adam Stevens
- Amy Elliott
- Biruk A Feyissa
- Cameron Adkins
- Clay Leach
- Debjani Pal
- Erin Webb
- Eve Tsybina
- Evin Carter
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vincent Paquit
- Viswadeep Lebakula
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yukinori Yamamoto

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.