Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- William Carter
- Adam Willoughby
- Alex Roschli
- Alex Walters
- Brian Post
- Kuntal De
- Luke Meyer
- Rishi Pillai
- Udaya C Kalluri
- Adam Stevens
- Amy Elliott
- Biruk A Feyissa
- Brandon Johnston
- Bruce A Pint
- Cameron Adkins
- Charles Hawkins
- Clay Leach
- Debjani Pal
- Erin Webb
- Evin Carter
- Isha Bhandari
- Jeremy Malmstead
- Jiheon Jun
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vincent Paquit
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.