Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- Hongbin Sun
- Ilias Belharouak
- Jaswinder Sharma
- Prashant Jain
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Alex Roschli
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georgios Polyzos
- Ian Greenquist
- Jeremy Malmstead
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kitty K Mccracken
- Logan Kearney
- Matthew S Chambers
- Mengdawn Cheng
- Michael Toomey
- Nancy Dudney
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peng Yang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sai Krishna Reddy Adapa
- Soydan Ozcan
- Tyler Smith
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiang Lyu
- Xianhui Zhao

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.