Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Hongbin Sun
- Prashant Jain
- Sergei V Kalinin
- Stephen Jesse
- Alexander I Wiechert
- Alex Roschli
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Ben Garrison
- Benjamin Manard
- Bogdan Dryzhakov
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Govindarajan Muralidharan
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Kai Li
- Kashif Nawaz
- Keith Carver
- Kevin M Roccapriore
- Kitty K Mccracken
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marti Checa Nualart
- Matt Kurley III
- Matt Vick
- Maxim A Ziatdinov
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Neus Domingo Marimon
- Nithin Panicker
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Saban Hus
- Sam Hollifield
- Soydan Ozcan
- Steven Randolph
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Tyler Smith
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Xianhui Zhao
- Yongtao Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.