Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Radu Custelcean
- Costas Tsouris
- Rafal Wojda
- Alexey Serov
- Ali Riza Ekti
- Gyoung Gug Jang
- Isabelle Snyder
- Jeffrey Einkauf
- Prasad Kandula
- Singanallur Venkatakrishnan
- Vandana Rallabandi
- Xiang Lyu
- Aaron Wilson
- Alexander I Wiechert
- Ali Abouimrane
- Amir K Ziabari
- Benjamin L Doughty
- Bruce Moyer
- Diana E Hun
- Elizabeth Piersall
- Emilio Piesciorovsky
- Gs Jung
- Jaswinder Sharma
- Jonathan Willocks
- Marm Dixit
- Mostak Mohammad
- Nikki Thiele
- Nils Stenvig
- Omer Onar
- Ozgur Alaca
- Philip Bingham
- Philip Boudreaux
- Raymond Borges Hink
- Ruhul Amin
- Ryan Dehoff
- Santa Jansone-Popova
- Stephen M Killough
- Subho Mukherjee
- Suman Debnath
- Vincent Paquit
- Yaosuo Xue
- Aaron Werth
- Adam Siekmann
- Alex Plotkowski
- Amit K Naskar
- Benjamin Manard
- Ben LaRiviere
- Beth L Armstrong
- Bryan Maldonado Puente
- Burak Ozpineci
- Charles F Weber
- Christopher Fancher
- Corey Cooke
- David L Wood III
- Emrullah Aydin
- Ethan Self
- Eve Tsybina
- Fei Wang
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gina Accawi
- Guang Yang
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Ilja Popovs
- Isaac Sikkema
- James Szybist
- Jayanthi Kumar
- Jennifer M Pyles
- Jin Dong
- Joanna Mcfarlane
- Jong K Keum
- Joseph Olatt
- Junbin Choi
- Khryslyn G Araño
- Kunal Mondal
- Laetitia H Delmau
- Logan Kearney
- Luke Sadergaski
- Lu Yu
- Mahim Mathur
- Marcio Magri Kimpara
- Mark M Root
- Matt Vick
- Md Faizul Islam
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Mingyan Li
- Nance Ericson
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Parans Paranthaman
- Paul Groth
- Peter L Fuhr
- Peter Wang
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Kumar
- Ritu Sahore
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Santanu Roy
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Subhamay Pramanik
- Sunil Subedi
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Viswadeep Lebakula
- Vivek Sujan
- Yaocai Bai
- Yarom Polsky
- Yingzhong Ma
- Yonghao Gui
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.