Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rafal Wojda
- Lawrence {Larry} M Anovitz
- Prasad Kandula
- Vandana Rallabandi
- Alex Plotkowski
- Andrew G Stack
- Callie Goetz
- Christopher Fancher
- Christopher Hobbs
- Eddie Lopez Honorato
- Fred List III
- Juliane Weber
- Keith Carver
- Marcio Magri Kimpara
- Matt Kurley III
- Mostak Mohammad
- Omer Onar
- Peng Yang
- Praveen Kumar
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Thomas Butcher
- Tyler Gerczak

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.

The invention is related to the implementation of an bi-directional and isolated electric vehicle charger. The bidirectionality allows the electric vehicles to support the grid in case of disturbances thereby reducing the stress on the existing infrastructure.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.