Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Brian Post
- Mostak Mohammad
- Chris Tyler
- Sheng Dai
- Vandana Rallabandi
- Justin West
- Parans Paranthaman
- Peter Wang
- Shajjad Chowdhury
- Bishnu Prasad Thapaliya
- Erdem Asa
- Ritin Mathews
- Vivek Sujan
- Zhenzhen Yang
- Ahmed Hassen
- Andrzej Nycz
- Blane Fillingim
- Burak Ozpineci
- Chris Masuo
- Craig A Bridges
- Emrullah Aydin
- Jon Wilkins
- Peeyush Nandwana
- Shannon M Mahurin
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Beth L Armstrong
- David Olvera Trejo
- Edgar Lara-Curzio
- Gui-Jia Su
- Ilja Popovs
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Li-Qi Qiu
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Saurabh Prakash Pethe
- Scott Smith
- Tolga Aytug
- Uday Vaidya
- Veda Prakash Galigekere
- Vlastimil Kunc
- William Carter
- Yousub Lee
- Adam Siekmann
- Akash Jag Prasad
- Alexei P Sokolov
- Alex Roschli
- Ali Riza Ekti
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Anees Alnajjar
- Ben Lamm
- Brian Gibson
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Greg Corson
- Isabelle Snyder
- Isha Bhandari
- James Klett
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Kaustubh Mungale
- Keith Carver
- Liam White
- Lingxiao Xue
- Luke Meyer
- Meghan Lamm
- Michael Borish
- Nageswara Rao
- Nidia Gallego
- Philip Bingham
- Phillip Halstenberg
- Rafal Wojda
- Richard Howard
- Roger G Miller
- Santa Jansone-Popova
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Subhamay Pramanik
- Tao Hong
- Thomas Butcher
- Tomonori Saito
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- William Peter
- Yukinori Yamamoto

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Induction cooktops are becoming popular; however, a limitation is that compatible cookware is required. This is a significant barrier to its adoption.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.